Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e1878, 2024.
Article in English | MEDLINE | ID: mdl-38660148

ABSTRACT

Hyperparameter tuning plays a pivotal role in the accuracy and reliability of convolutional neural network (CNN) models used in brain tumor diagnosis. These hyperparameters exert control over various aspects of the neural network, encompassing feature extraction, spatial resolution, non-linear mapping, convergence speed, and model complexity. We propose a meticulously refined CNN hyperparameter model designed to optimize critical parameters, including filter number and size, stride padding, pooling techniques, activation functions, learning rate, batch size, and the number of layers. Our approach leverages two publicly available brain tumor MRI datasets for research purposes. The first dataset comprises a total of 7,023 human brain images, categorized into four classes: glioma, meningioma, no tumor, and pituitary. The second dataset contains 253 images classified as "yes" and "no." Our approach delivers exceptional results, demonstrating an average 94.25% precision, recall, and F1-score with 96% accuracy for dataset 1, while an average 87.5% precision, recall, and F1-score, with accuracy of 88% for dataset 2. To affirm the robustness of our findings, we perform a comprehensive comparison with existing techniques, revealing that our method consistently outperforms these approaches. By systematically fine-tuning these critical hyperparameters, our model not only enhances its performance but also bolsters its generalization capabilities. This optimized CNN model provides medical experts with a more precise and efficient tool for supporting their decision-making processes in brain tumor diagnosis.

2.
PeerJ Comput Sci ; 10: e1867, 2024.
Article in English | MEDLINE | ID: mdl-38435590

ABSTRACT

The accurate detection of brain tumors through medical imaging is paramount for precise diagnoses and effective treatment strategies. In this study, we introduce an innovative and robust methodology that capitalizes on the transformative potential of the Swin Transformer architecture for meticulous brain tumor image classification. Our approach handles the classification of brain tumors across four distinct categories: glioma, meningioma, non-tumor, and pituitary, leveraging a dataset comprising 2,870 images. Employing the Swin Transformer architecture, our method intricately integrates a multifaceted pipeline encompassing sophisticated preprocessing, intricate feature extraction mechanisms, and a highly nuanced classification framework. Utilizing 21 matrices for performance evaluation across all four classes, these matrices provide a detailed insight into the model's behavior throughout the learning process, furthermore showcasing a graphical representation of confusion matrix, training and validation loss and accuracy. The standout performance parameter, accuracy, stands at an impressive 97%. This achievement outperforms established models like CNN, DCNN, ViT, and their variants in brain tumor classification. Our methodology's robustness and exceptional accuracy showcase its potential as a pioneering model in this domain, promising substantial advancements in accurate tumor identification and classification, thereby contributing significantly to the landscape of medical image analysis.

3.
Curr Med Imaging ; 20: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-38389382

ABSTRACT

BACKGROUND: Segmenting tumors in MRI scans is a difficult and time-consuming task for radiologists. This is because tumors come in different shapes, sizes, and textures, making them hard to identify visually. OBJECTIVE: This study proposes a new method called the enhanced regularized ensemble encoder-decoder network (EREEDN) for more accurate brain tumor segmentation. METHODS: The EREEDN model first preprocesses the MRI data by normalizing the intensity levels. It then uses a series of autoencoder networks to segment the tumor. These autoencoder networks are trained using back-propagation and gradient descent. To prevent overfitting, the EREEDN model also uses L2 regularization and dropout mechanisms. RESULTS: The EREEDN model was evaluated on the BraTS 2020 dataset. It achieved high performance on various metrics, including accuracy, sensitivity, specificity, and dice coefficient score. The EREEDN model outperformed other methods on the BraTS 2020 dataset. CONCLUSION: The EREEDN model is a promising new method for brain tumor segmentation. It is more accurate and efficient than previous methods. Future studies will focus on improving the performance of the EREEDN model on complex tumors.


Subject(s)
Brain Neoplasms , Neural Networks, Computer , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
PeerJ Comput Sci ; 9: e1667, 2023.
Article in English | MEDLINE | ID: mdl-38077569

ABSTRACT

Brain tumor has become one of the fatal causes of death worldwide in recent years, affecting many individuals annually and resulting in loss of lives. Brain tumors are characterized by the abnormal or irregular growth of brain tissues that can spread to nearby tissues and eventually throughout the brain. Although several traditional machine learning and deep learning techniques have been developed for detecting and classifying brain tumors, they do not always provide an accurate and timely diagnosis. This study proposes a conditional generative adversarial network (CGAN) that leverages the fine-tuning of a convolutional neural network (CNN) to achieve more precise detection of brain tumors. The CGAN comprises two parts, a generator and a discriminator, whose outputs are used as inputs for fine-tuning the CNN model. The publicly available dataset of brain tumor MRI images on Kaggle was used to conduct experiments for Datasets 1 and 2. Statistical values such as precision, specificity, sensitivity, F1-score, and accuracy were used to evaluate the results. Compared to existing techniques, our proposed CGAN model achieved an accuracy value of 0.93 for Dataset 1 and 0.97 for Dataset 2.

5.
Sensors (Basel) ; 23(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765970

ABSTRACT

This paper presents a comprehensive study on the classification of brain tumor images using five pre-trained vision transformer (ViT) models, namely R50-ViT-l16, ViT-l16, ViT-l32, ViT-b16, and ViT-b32, employing a fine-tuning approach. The objective of this study is to advance the state-of-the-art in brain tumor classification by harnessing the power of these advanced models. The dataset utilized for experimentation consists of a total of 4855 images in the training set and 857 images in the testing set, encompassing four distinct tumor classes. The performance evaluation of each model is conducted through an extensive analysis encompassing precision, recall, F1-score, accuracy, and confusion matrix metrics. Among the models assessed, ViT-b32 demonstrates exceptional performance, achieving a high accuracy of 98.24% in accurately classifying brain tumor images. Notably, the obtained results outperform existing methodologies, showcasing the efficacy of the proposed approach. The contributions of this research extend beyond conventional methods, as it not only employs cutting-edge ViT models but also surpasses the performance of existing approaches for brain tumor image classification. This study not only demonstrates the potential of ViT models in medical image analysis but also provides a benchmark for future research in the field of brain tumor classification.

6.
Life (Basel) ; 13(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37511824

ABSTRACT

Nowadays, brain tumors have become a leading cause of mortality worldwide. The brain cells in the tumor grow abnormally and badly affect the surrounding brain cells. These cells could be either cancerous or non-cancerous types, and their symptoms can vary depending on their location, size, and type. Due to its complex and varying structure, detecting and classifying the brain tumor accurately at the initial stages to avoid maximum death loss is challenging. This research proposes an improved fine-tuned model based on CNN with ResNet50 and U-Net to solve this problem. This model works on the publicly available dataset known as TCGA-LGG and TCIA. The dataset consists of 120 patients. The proposed CNN and fine-tuned ResNet50 model are used to detect and classify the tumor or no-tumor images. Furthermore, the U-Net model is integrated for the segmentation of the tumor regions correctly. The model performance evaluation metrics are accuracy, intersection over union, dice similarity coefficient, and similarity index. The results from fine-tuned ResNet50 model are IoU: 0.91, DSC: 0.95, SI: 0.95. In contrast, U-Net with ResNet50 outperforms all other models and correctly classified and segmented the tumor region.

7.
Diagnostics (Basel) ; 13(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370989

ABSTRACT

A brain tumor is a significant health concern that directly or indirectly affects thousands of people worldwide. The early and accurate detection of brain tumors is vital to the successful treatment of brain tumors and the improved quality of life of the patient. There are several imaging techniques used for brain tumor detection. Among these techniques, the most common are MRI and CT scans. To overcome the limitations associated with these traditional techniques, computer-aided analysis of brain images has gained attention in recent years as a promising approach for accurate and reliable brain tumor detection. In this study, we proposed a fine-tuned vision transformer model that uses advanced image processing and deep learning techniques to accurately identify the presence of brain tumors in the input data images. The proposed model FT-ViT involves several stages, including the processing of data, patch processing, concatenation, feature selection and learning, and fine tuning. Upon training the model on the CE-MRI dataset containing 5712 brain tumor images, the model could accurately identify the tumors. The FT-Vit model achieved an accuracy of 98.13%. The proposed method offers high accuracy and can significantly reduce the workload of radiologists, making it a practical approach in medical science. However, further research can be conducted to diagnose more complex and rare types of tumors with more accuracy and reliability.

8.
Biomed Res Int ; 2022: 5260231, 2022.
Article in English | MEDLINE | ID: mdl-35909473

ABSTRACT

Pneumonia is a common lung disease that is the leading cause of death worldwide. It primarily affects children, accounting for 18% of all deaths in children under the age of five, the elderly, and patients with other diseases. There is a variety of imaging diagnosis techniques available today. While many of them are becoming more accurate, chest radiographs are still the most common method for detecting pulmonary infections due to cost and speed. A convolutional neural network (CNN) model has been developed to classify chest X-rays in JPEG format into normal, bacterial pneumonia, and viral pneumonia. The model was trained using data from an open Kaggle database. The data augmentation technique was used to improve the model's performance. A web application built with NextJS and hosted on AWS has also been designed. The model that was optimized using the data augmentation technique had slightly better precision than the original model. This model was used to create a web application that can process an image and provide a prediction to the user. A classification model was developed that generates a prediction with 78 percent accuracy. The precision of this calculation could be improved by increasing the epoch, among other subjects. With the help of artificial intelligence, this research study was aimed at demonstrating to the general public that deep-learning models can be created to assist health professionals in the early detection of pneumonia.


Subject(s)
Deep Learning , Pneumonia, Viral , Aged , Artificial Intelligence , Child , Humans , Machine Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...